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Secure Remote Computation
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Task: x and f(x) are sensitive data. Can you query database without revealing
what you're searching and your search results?

Private Information Retrieval (PIR)



Secure Remote Computation
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Fully Homomorphic Encryption (FHE)
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Task: x and f(x) are both sensitive data. We want the cloud to compute f(x)
securely without knowing x and f(x)
FHE computes on ciphertext c (x is never exposed) ——> too slow



Trusted Execution Environment (TEE) - Trusted Hardware
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Task: x and f(x) are both sensitive data. We want the cloud to compute f(x)
securely without knowing x and f(x)

We trust TEE so operation is done on unencrypted info——> faster
Problem: leads to large attack surface, subject to side-channel attacks



What are Side Channels?
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One program can exploit shared resources to spy on another



Example of Side Channels
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Trusted Execution Environments!



Our Solution to Secure Remote Computation

e Take inspiration from Fully Homomorphic Encryption (FHE) and
Trusted Execution Environment (TEE)
e Based ontrusted hardware
e BUT reduce our “trusted area” as much as possible
o Key idea: reduce expressivity (only compute circuits)
e Result: mitigate side channel attacks

Security: e.g. FHE Expressivity: e.g. TEE

Alcatraz
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Reducing Area of Trust



Trusted Execution Environment and Shared Resources
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No More TEE
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Encrypted ALU via Sequestered Encryption

e ALU (Arithmetic Logic Unit) operates at the execution stage of CPU
pipeline

e Alcatrazintroduces an Encrypted ALU, which sandwiches ALU
operations between an encryption and decryption
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Extended Instructions are Dispatched to Encrypted ALU

fetch —> decode execute —» write
execute
Our Special i

ADD Instruction
EncALU
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Proving Security of Encrypted ALU
Against Timing-Based Side Channel
Attacks



Formal Verification

e We want to prove our hardware module is secure against all
possibilities of timing-based side channel attacks

I ignal ignal
Hardware nput signa Output signa
—> |[mplementation =—>» —
input of EncALU output LT T

e Infeasible to try all types of input signals one by one
e Instead, we use “symbols” to represent the input signals (similar to
algebra)
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Knox Framework

X Hardware 8(x)

Real world input |mp|ementation Output

X : f(x)
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ﬁ . . ﬁ
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e g(x): symbolic computation result following the hardware implementation
e f(x): symbolic computation result following the functional specification

Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI 2022) 18



Knox Framework

X 3(x)
Real world . :—Iarflware . —
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We want to prove these
two are indistinguishable
X Functional f(x)

ldeal world (correct and secure —_— . . —_—
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e Formulate the problem as proving the formula “g(x) # f(x)” is unsatisfiable
e Use Satisfiability Modulo Theories (SMT) solvers to prove the formula
e Successfully applied to identify timing side channels in hardware security

modules

Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI 2022) 17



Challenges in Applying Knox to Our Problem

e [tisstill very challenging to apply the approach to our problem, because
both f(x) and g(x) are extremely large and complex terms.
e SMT problem is typically NP-hard. There is no efficient algorithms to
solve the general case.
e Given the size and complexity of our problem, we need to give guidance
to the SMT solver to speed up the proof
o We need to break big problems into smaller problems
o We need to create customized hints for the SMT solver
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Speeding Up Verification

e Technique 1: Break down
o Break down the problem using states in the finite state machine
o First, prove f,(x)and g,(x) are indistinguishable
o Step by step, provef,(x) and g, (x) are indistinguishable

e Technique 2: Add customized hints to speed up at each step
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Performance Results
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Implementation

e We implemented the encrypted ALU in Verilog
o Created correctness and security proofs in Knox

e Integrated the encrypted ALU with an open source RISC-V core (Ibex)
and vector coprocessor (Vicuna)

e Encoded the customized instructions using inline assembly

e Microbenchmark done in simulation (used Verilator with synthesis by
Vivado)

o Synthesis target: Digilent Nexys Video board (Artix-7 FPGA)

https://ibex-core.readthedocs.io/en/latest/
https://vicuna.readthedocs.io/en/latest/
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Results

e \We measure the efficiency using the performance counter in the
RISC-V core

e Alcatraz completes 1 multiplication in roughly 250 clock cycles

Alcatraz Agrawal et al. Shivdikar et al.
Operation Multiplication FHE multiplication FHE multiplication
Hardware 50 MHz (estimate) 300 MHz FPGA GPU acceleration
Performance 5 microseconds 28 microseconds 464 microseconds
LUTs and FFs <10k LUT, <9k FF 1012k LUT, 1936k FF N/A

Agrawal, et al. "HEAP: A Fully Homomorphic Encryption Accelerator with Parallelized Bootstrapping." ISCA 2024.
Shivdikar, et al. “GME:GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption” (2023)
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