Alcatraz: Secure Remote Computation
via Sequestered Encryption in
Hardware Security Module

Albert Lu IIII-

1l
Mentors: ~RBHITHF
Jules Drean and Sacha Servan-Schreiber I I'II I'J
October 12th, 2024 MIT

MIT PRIMES October Conference

Secure Remote Computation

want to
privately
search for

A -
% 8= f(x) results

Secure Remote Computation

Encrypted
want to X J query . 4
privately >
search for AN
Wikipedia
O - ‘
% 0 © f(x) & Encrypted b wRARASSASSA
results — —

Task: x and f(x) are sensitive data. Can you query database without revealing
what you're searching and your search results?

Private Information Retrieval (PIR)

Secure Remote Computation

Security

Efficiency

Expressivity

|deal Solution:
Fully Homomorphic
Encryption (FHE)

Based on strong

cryptographic
assumption

Slow

Only compute
Logical Circuits

More Practical:
Trusted Execution
Environment (TEE)

Based on empirical
hardware security;
Vulnerable to
side channels

Fast

Can run programs

Our Solution:
Alcatraz
(inspired by both)

Minimal trusted
hardware;
Protected against
side channels

Fast

Only compute
Logical circuits

Fully Homomorphic Encryption (FHE)

Want to Encrypted Database3
privately X ¢ query > ¢ Aé
search for FHE

Computation

& -«
% o © f(x) & Encrypted c P

results :

Task: x and f(x) are both sensitive data. We want the cloud to compute f(x)
securely without knowing x and f(x)
FHE computes on ciphertext c (x is never exposed) ——> too slow

Trusted Execution Environment (TEE) - Trusted Hardware

Encrypted TEE Database3

X 4 query 1 ¢ ;x\/
}

Private Information
Retrieval Protocol

(@ -
% 6@ f(x) & Encrypted | o fx) /
E |

results :

want to
privately
search for

Task: x and f(x) are both sensitive data. We want the cloud to compute f(x)
securely without knowing x and f(x)

We trust TEE so operation is done on unencrypted info——> faster
Problem: leads to large attack surface, subject to side-channel attacks

What are Side Channels?

Codein TEE [> —
I Shared Resources
(e.g. Cache)
Attacker
Attacker can observe | AAA- m “SECRETS’

One program can exploit shared resources to spy on another

Example of Side Channels

Family using [/
the internet

I Shared Resources
Wifi
You watching
a movie

You observe “movie lags a lot” “family is also using wifi”

d

LVI: Hijacking Transient Executionn thrpugh
Microarchitectural Load Value Injection

Jo Van Bulck®, Daniel Moghimi Michael Schwarz*, Moritz Li i a Daniel Genkin®,
i varz! 2 Lippt, Marina Minkin §
s arz’, M
¥ Y:v | :{amm Berk Sunar', Daniel Gruss’, and Frank Piessens’

Spectre Returns! Speculation Attacks using _ 0 Lowen Woreestr Plychnic Insture Gz University of Technlogy
*imec-DistrilNet, KL Univerdty of Michigan 1Universiy of Adelaide and Data6l

Esmaeil Mohammadian Koruyeh, Khaled N:
Chengyu Song and Nael Abu-Ghazaleh
Computer Science and Engineering Department SGX Enc\
University of California, Riverside
naelag@ucr. edu

m
. | Secrets fro
sawne . aling Inte .

I 5% culative Execution

Zhang Zhiqiang Lin,
d Eng'meer‘mg

TRE AtACKS:
Se3LEC aves via Spe

Xiao, Yingian
Chen, Yuan {ence an
g Chen, Sanchuan ent of Computer Science i
Departmet L Ohio State Unive
chen,4825, xiao- S g
Ain, lafj@cse-oNiO

Ten H. Lai

Guoxin;

Ext Hardware-Backed Heist o
xtracti i : : yst

acting ECDSA Keys from Qualcomm’s TrustZ,
stZone

) Keegan Ryan*
Umversity of Ca}ifon);ia,nSan Die,
La Jolla, Californj; =
Nce Group
Seattle, Washingto|
kryan@eng.ucsd.e

Stephan van Schaik

University of Michj iversi o
an U ichi i ,
s[epms@mnmh‘edgu ; n}iversnyrof Mnchxgan University of Michigan Universj o Ya'mm
ankwong @umich.edy genkin@umich.edy eml[y ool g
g ¥ yval@cs.adelaide.edu.ay

Andrew Kwong

Lots of different side channel attacks against
Trusted Execution Environments!

Our Solution to Secure Remote Computation

e Take inspiration from Fully Homomorphic Encryption (FHE) and
Trusted Execution Environment (TEE)
e Based ontrusted hardware
e BUT reduce our “trusted area” as much as possible
o Key idea: reduce expressivity (only compute circuits)
e Result: mitigate side channel attacks

Security: e.g. FHE Expressivity: e.g. TEE

Alcatraz

10

Reducing Area of Trust

Trusted Execution Environment and Shared Resources

TEE
Trusted Apps
Trusted OS
CPU
¢}
T 8| |5])8
o o Q -+
= Qo -+ ()}
o ()

!

Untrusted

Apps

oS

Main CPU

!

Shared Resources (e.g. Cache)

12

No More TEE

Untrusted
Apps
OS
CPU
()
3| |8 5] |2
o o Q -+
= Q. -+ (1))
o [0))

!

Untrusted

Apps

oS

Main CPU

!

Shared Resources (e.g. Cache)

13

Encrypted ALU via Sequestered Encryption

e ALU (Arithmetic Logic Unit) operates at the execution stage of CPU
pipeline

e Alcatrazintroduces an Encrypted ALU, which sandwiches ALU
operations between an encryption and decryption

O
= s Il © E1c
= AES o > o i AES e
= Decryption i =, 3' S Encryption =
o o = @ < ® ~
~+ 5- (7] = —~+

Common
Secret

Extended Instructions are Dispatched to Encrypted ALU

fetch —> decode execute —» write
execute
Our Special i

ADD Instruction
EncALU

15

Proving Security of Encrypted ALU
Against Timing-Based Side Channel
Attacks

Formal Verification

e We want to prove our hardware module is secure against all
possibilities of timing-based side channel attacks

I ignal ignal
Hardware nput signa Output signa
—> |[mplementation =—>» —
input of EncALU output LT T

e Infeasible to try all types of input signals one by one
e Instead, we use “symbols” to represent the input signals (similar to
algebra)

17

Knox Framework

X Hardware 8(x)

Real world input |mp|ementation Output

X : f(x)
Functional
ﬁ . . ﬁ
Ideal world (correct and secure) input _ Specification output

e g(x): symbolic computation result following the hardware implementation
e f(x): symbolic computation result following the functional specification

Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI 2022) 18

Knox Framework

X 3(x)
Real world . :—Iarflware . —
input mplementation output
We want to prove these
two are indistinguishable
X Functional f(x)

ldeal world (correct and secure —_— . . —_—
() input_ Specification output

e Formulate the problem as proving the formula “g(x) # f(x)” is unsatisfiable
e Use Satisfiability Modulo Theories (SMT) solvers to prove the formula
e Successfully applied to identify timing side channels in hardware security

modules

Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI 2022) 17

Challenges in Applying Knox to Our Problem

e [tisstill very challenging to apply the approach to our problem, because
both f(x) and g(x) are extremely large and complex terms.
e SMT problem is typically NP-hard. There is no efficient algorithms to
solve the general case.
e Given the size and complexity of our problem, we need to give guidance
to the SMT solver to speed up the proof
o We need to break big problems into smaller problems
o We need to create customized hints for the SMT solver

20

Speeding Up Verification

e Technique 1: Break down
o Break down the problem using states in the finite state machine
o First, prove f,(x)and g,(x) are indistinguishable
o Step by step, provef,(x) and g, (x) are indistinguishable

e Technique 2: Add customized hints to speed up at each step

|deal world
(correct and secure)

X 1 f (x)

— £ () —| £ > ... —

i
>

Real world X—1g,(xF71>| &,X) 7T ... | g_,(X)[T> 3 (x)

21

Performance Results

22

Implementation

e We implemented the encrypted ALU in Verilog
o Created correctness and security proofs in Knox

e Integrated the encrypted ALU with an open source RISC-V core (Ibex)
and vector coprocessor (Vicuna)

e Encoded the customized instructions using inline assembly

e Microbenchmark done in simulation (used Verilator with synthesis by
Vivado)

o Synthesis target: Digilent Nexys Video board (Artix-7 FPGA)

https://ibex-core.readthedocs.io/en/latest/
https://vicuna.readthedocs.io/en/latest/

23

https://ibex-core.readthedocs.io/en/latest/
https://vicuna.readthedocs.io/en/latest/

Results

e \We measure the efficiency using the performance counter in the
RISC-V core

e Alcatraz completes 1 multiplication in roughly 250 clock cycles

Alcatraz Agrawal et al. Shivdikar et al.
Operation Multiplication FHE multiplication FHE multiplication
Hardware 50 MHz (estimate) 300 MHz FPGA GPU acceleration
Performance 5 microseconds 28 microseconds 464 microseconds
LUTs and FFs <10k LUT, <9k FF 1012k LUT, 1936k FF N/A

Agrawal, et al. "HEAP: A Fully Homomorphic Encryption Accelerator with Parallelized Bootstrapping." ISCA 2024.
Shivdikar, et al. “GME:GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption” (2023)

Acknowledgements

My Mentors Author of Knox (PRIMES Alum)

Jules Drean Sacha Servan-Schreiber

Prof. Srini Devadas, Dr. Slava Gerovitch, and
MIT PRIMES for making this possible!

References

e Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI
2022)

e Agrawal, Rashmi, Anantha Chandrakasan, and Ajay Joshi. "HEAP: A Fully Homomorphic
Encryption Accelerator with Parallelized Bootstrapping." 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA). IEEE, 2024.

e Shivdikar, et. al. “GME:GPU-based Microarchitectural Extensions to Accelerate Homomorphic
Encryption”, arXiv:2309.11001 [cs.CR].

e Biernacki, et. al. “Sequestered Encryption: A Hardware Technique for Comprehensive Data
Privacy”, 2022

26

Thank you!

