
Alcatraz: Secure Remote Computation
via Sequestered Encryption in
Hardware Security Module

Albert Lu

Mentors:
Jules Drean and Sacha Servan-Schreiber

October 12th, 2024
MIT PRIMES October Conference

Wikipedia

want to
privately

search for
…

Secure Remote Computation

query

resultsf(x)

x

2

Wikipedia

Secure Remote Computation

Encrypted
query 🔒

🔒 Encrypted
results

Task: x and f(x) are sensitive data. Can you query database without revealing
what you're searching and your search results?

Private Information Retrieval (PIR)

f(x)

x

3

want to
privately

search for
…

Secure Remote Computation

4

Ideal Solution:
Fully Homomorphic
Encryption (FHE)

More Practical:
Trusted Execution
Environment (TEE)

Our Solution:
Alcatraz
(inspired by both)

Security Based on strong
cryptographic
assumption

Based on empirical
hardware security;
Vulnerable to
side channels

Minimal trusted
hardware;
Protected against
side channels

Efficiency Slow Fast Fast

Expressivity Only compute
Logical Circuits

Can run programs Only compute
Logical circuits

FHE
Computation

Fully Homomorphic Encryption (FHE)

Encrypted
query

Encrypted
results

Task: x and f(x) are both sensitive data. We want the cloud to compute f(x)
securely without knowing x and f(x)
FHE computes on ciphertext c (x is never exposed) too slow

f(x)

x 🔒
Database

5

want to
privately

search for
…

c

c’
🔒 🔒

🔒

🔒

want to
privately

search for
…

Database

Trusted Execution Environment (TEE) - Trusted Hardware

Encrypted
query

Encrypted
results

Task: x and f(x) are both sensitive data. We want the cloud to compute f(x)
securely without knowing x and f(x)
We trust TEE so operation is done on unencrypted info faster
Problem: leads to large attack surface, subject to side-channel attacks

f(x)

x 🔒
TEE

Private Information
Retrieval Protocol

6

x

f(x)

c

c’

🔒

🔒

want to
privately

search for
…

Attacker can observe “SECRETS”

Shared Resources
(e.g. Cache)

access

accessAttacker

Code in TEE

One program can exploit shared resources to spy on another

What are Side Channels?

7

Shared Resources
Wifi

access

accessYou watching
a movie

Family using
the internet

Example of Side Channels

You observe “movie lags a lot” “family is also using wifi”

8

Lots of different side channel attacks against
Trusted Execution Environments!

9

Our Solution to Secure Remote Computation

● Take inspiration from Fully Homomorphic Encryption (FHE) and

Trusted Execution Environment (TEE)

● Based on trusted hardware

● BUT reduce our “trusted area” as much as possible

○ Key idea: reduce expressivity (only compute circuits)
● Result: mitigate side channel attacks

Expressivity: e.g. TEESecurity: e.g. FHE

10

Alcatraz

Reducing Area of Trust

11

TEE

Apps

OS

Main CPU

Shared Resources (e.g. Cache)

Untrusted

Trusted Execution Environment and Shared Resources

12

Trusted Apps

Trusted OS

d
eco

d
e

execu
te

w
rite

fetch

CPU

Apps

OS

Main CPU

Shared Resources (e.g. Cache)

Untrusted

No More TEE

13

d
eco

d
e

execu
te

w
rite

fetch

Untrusted
Apps

OS

CPU

Encrypted ALU via Sequestered Encryption

14

● ALU (Arithmetic Logic Unit) operates at the execution stage of CPU

pipeline

● Alcatraz introduces an Encrypted ALU, which sandwiches ALU

operations between an encryption and decryption

Extended Instructions are Dispatched to Encrypted ALU

decode execute writefetch

execute
in

EncALU

Our Special
ADD Instruction

15

Proving Security of Encrypted ALU
Against Timing-Based Side Channel
Attacks

16

Formal Verification

● We want to prove our hardware module is secure against all
possibilities of timing-based side channel attacks

● Infeasible to try all types of input signals one by one
● Instead, we use “symbols” to represent the input signals (similar to

algebra)

Input signal Output signal

… …

Hardware
Implementation
of EncALUinput output

17

Knox Framework

Ideal world (correct and secure)

Real world

Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI 2022)

● g(x): symbolic computation result following the hardware implementation
● f(x): symbolic computation result following the functional specification

Functional
Specification outputinput

x f(x)

Hardware
Implementation outputinput

x g(x)

18

Knox Framework

We want to prove these
two are indistinguishable

Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI 2022)

● Formulate the problem as proving the formula “g(x) ≠ f(x)” is unsatisfiable
● Use Satisfiability Modulo Theories (SMT) solvers to prove the formula

● Successfully applied to identify timing side channels in hardware security

modules
19

Ideal world (correct and secure)

Real world

Functional
Specification outputinput

x f(x)

Hardware
Implementation outputinput

x g(x)

Challenges in Applying Knox to Our Problem

● It is still very challenging to apply the approach to our problem, because

both f(x) and g(x) are extremely large and complex terms.

● SMT problem is typically NP-hard. There is no efficient algorithms to

solve the general case.

● Given the size and complexity of our problem, we need to give guidance

to the SMT solver to speed up the proof

○ We need to break big problems into smaller problems

○ We need to create customized hints for the SMT solver

20

Speeding Up Verification

● Technique 1: Break down

○ Break down the problem using states in the finite state machine

○ First, prove f1(x) and g1(x) are indistinguishable

○ Step by step, prove fk(x) and gk(x) are indistinguishable

● Technique 2: Add customized hints to speed up at each step

21

Ideal world
(correct and secure) x f1(x) f2(x) fn-1(x

)
… fn(x)

Real world x g1(x) g2(x) gn-1(x)… gn(x)

Performance Results

22

Implementation

● We implemented the encrypted ALU in Verilog

○ Created correctness and security proofs in Knox

● Integrated the encrypted ALU with an open source RISC-V core (Ibex)

and vector coprocessor (Vicuna)

● Encoded the customized instructions using inline assembly

● Microbenchmark done in simulation (used Verilator with synthesis by

Vivado)

○ Synthesis target: Digilent Nexys Video board (Artix-7 FPGA)

https://ibex-core.readthedocs.io/en/latest/
https://vicuna.readthedocs.io/en/latest/

23

https://ibex-core.readthedocs.io/en/latest/
https://vicuna.readthedocs.io/en/latest/

Results

● We measure the efficiency using the performance counter in the

RISC-V core

● Alcatraz completes 1 multiplication in roughly 250 clock cycles

Agrawal, et al. "HEAP: A Fully Homomorphic Encryption Accelerator with Parallelized Bootstrapping." ISCA 2024.

Shivdikar, et al. “GME:GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption” (2023)

Alcatraz Agrawal et al. Shivdikar et al.

Operation Multiplication FHE multiplication FHE multiplication

Hardware 50 MHz (estimate) 300 MHz FPGA GPU acceleration

Performance 5 microseconds 28 microseconds 464 microseconds

LUTs and FFs <10k LUT, <9k FF 1012k LUT, 1936k FF N/A

24

Acknowledgements

25

Prof. Srini Devadas, Dr. Slava Gerovitch, and
MIT PRIMES for making this possible!

My Mentors Author of Knox (PRIMES Alum)

Jules Drean Sacha Servan-Schreiber Anish Athalye

● Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI
2022)

● Agrawal, Rashmi, Anantha Chandrakasan, and Ajay Joshi. "HEAP: A Fully Homomorphic

Encryption Accelerator with Parallelized Bootstrapping." 2024 ACM/IEEE 51st Annual

International Symposium on Computer Architecture (ISCA). IEEE, 2024.

● Shivdikar, et. al. “GME:GPU-based Microarchitectural Extensions to Accelerate Homomorphic

Encryption”, arXiv:2309.11001 [cs.CR].

● Biernacki, et. al. “Sequestered Encryption: A Hardware Technique for Comprehensive Data

Privacy”, 2022

References

26

Thank you!

27

