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Wikipedia

Secure Remote Computation

Encrypted 
query 🔒

🔒 Encrypted 
results

Task: x and f(x) are sensitive data. Can you query database without revealing 
what you're searching and your search results?

Private Information Retrieval (PIR)
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Secure Remote Computation
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Ideal Solution: 
Fully Homomorphic 
Encryption (FHE)

More Practical: 
Trusted Execution 
Environment (TEE)

Our Solution: 
Alcatraz
(inspired by both)

Security Based on strong 
cryptographic 
assumption

Based on empirical 
hardware security;
Vulnerable to 
side channels

Minimal trusted 
hardware;
Protected against 
side channels

Efficiency Slow Fast Fast

Expressivity Only compute 
Logical Circuits

Can run programs Only compute 
Logical circuits



FHE 
Computation

Fully Homomorphic Encryption (FHE)

Encrypted 
query 

Encrypted 
results

Task: x and f(x) are both sensitive data. We want the cloud to compute f(x) 
securely without knowing x and f(x) 
FHE computes on ciphertext c (x is never exposed)               too slow

f(x)

x 🔒
Database
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Database

Trusted Execution Environment (TEE) - Trusted Hardware

Encrypted 
query 

Encrypted 
results

Task: x and f(x) are both sensitive data. We want the cloud to compute f(x) 
securely without knowing x and f(x) 
We trust TEE so operation is done on unencrypted info               faster
Problem: leads to large attack surface, subject to side-channel attacks

f(x)

x 🔒
TEE

Private Information 
Retrieval Protocol 
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Attacker can observe                                                                    “SECRETS”

Shared Resources
(e.g. Cache)

access

accessAttacker

Code in TEE

One program can exploit shared resources to spy on another 

What are Side Channels?
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Shared Resources
Wifi

access

accessYou watching 
a movie

Family using 
the internet

Example of Side Channels

You observe             “movie lags a lot”                                    “family is also using wifi”
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Lots of different side channel attacks against 
Trusted Execution Environments!
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Our Solution to Secure Remote Computation

● Take inspiration from Fully Homomorphic Encryption (FHE) and 

Trusted Execution Environment (TEE)

● Based on trusted hardware 

● BUT reduce our “trusted area” as much as possible

○ Key idea: reduce expressivity (only compute circuits)
● Result: mitigate side channel attacks

Expressivity: e.g. TEESecurity: e.g. FHE
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Alcatraz



Reducing Area of Trust

11



TEE

Apps

OS

Main CPU

Shared Resources (e.g. Cache)

Untrusted 

Trusted Execution Environment and Shared Resources
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Encrypted ALU via Sequestered Encryption
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● ALU (Arithmetic Logic Unit) operates at the execution stage of CPU 

pipeline

● Alcatraz introduces an Encrypted ALU, which sandwiches ALU 

operations between an encryption and decryption 



Extended Instructions are Dispatched to Encrypted ALU

decode execute writefetch

execute 
in

EncALU

Our Special 
ADD Instruction

15



Proving Security of Encrypted ALU 
Against Timing-Based Side Channel 
Attacks
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Formal Verification

● We want to prove our hardware module is secure against all 
possibilities of timing-based side channel attacks

● Infeasible to try all types of input signals one by one
● Instead, we use “symbols” to represent the input signals (similar to 

algebra)

Input signal Output signal

… …

Hardware 
Implementation 
of EncALUinput output
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Knox Framework

Ideal world (correct and secure)

Real world

Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI 2022)

● g(x): symbolic computation result following the hardware implementation
● f(x): symbolic computation result following the functional specification

Functional 
Specification outputinput

x f(x)

Hardware 
Implementation outputinput

x g(x)
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Knox Framework

We want to prove these 
two are indistinguishable

Athalye et al. “Verifying Hardware Security Modules with Information-Preserving Refinement” (OSDI 2022)

● Formulate the problem as proving the formula “g(x) ≠ f(x)” is unsatisfiable
● Use Satisfiability Modulo Theories (SMT) solvers to prove the formula

● Successfully applied to identify timing side channels in hardware security 

modules
19

Ideal world (correct and secure)

Real world

Functional 
Specification outputinput

x f(x)

Hardware 
Implementation outputinput

x g(x)



Challenges in Applying Knox to Our Problem

● It is still very challenging to apply the approach to our problem, because 

both f(x) and g(x) are extremely large and complex terms.

● SMT problem is typically NP-hard. There is no efficient algorithms to 

solve the general case. 

● Given the size and complexity of our problem, we need to give guidance 

to the SMT solver to speed up the proof

○ We need to break big problems into smaller problems

○ We need to create customized hints for the SMT solver 
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Speeding Up Verification

● Technique 1: Break down 

○ Break down the problem using states in the finite state machine

○ First, prove  f1(x) and g1(x) are indistinguishable

○ Step by step,  prove fk(x) and gk(x) are indistinguishable

● Technique 2: Add customized hints to speed up at each step
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Ideal world 
(correct and secure) x f1(x) f2(x) fn-1(x

)
… fn(x)

Real world x g1(x) g2(x) gn-1(x)… gn(x)



Performance Results
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Implementation

● We implemented the encrypted ALU in Verilog

○ Created correctness and security proofs in Knox

● Integrated the encrypted ALU with an open source RISC-V core (Ibex) 

and vector coprocessor (Vicuna)

● Encoded the customized instructions using inline assembly

● Microbenchmark done in simulation (used Verilator with synthesis by 

Vivado)

○ Synthesis target: Digilent Nexys Video board (Artix-7 FPGA)

https://ibex-core.readthedocs.io/en/latest/
https://vicuna.readthedocs.io/en/latest/
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Results

● We measure the efficiency using the performance counter in the 

RISC-V core

● Alcatraz completes 1 multiplication in roughly 250 clock cycles

Agrawal, et al. "HEAP: A Fully Homomorphic Encryption Accelerator with Parallelized Bootstrapping." ISCA 2024.

Shivdikar, et al. “GME:GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption” (2023)

Alcatraz Agrawal et al. Shivdikar et al.

Operation Multiplication FHE multiplication FHE multiplication

Hardware 50 MHz (estimate) 300 MHz FPGA GPU acceleration

Performance 5 microseconds 28 microseconds 464 microseconds

LUTs and FFs <10k LUT, <9k FF 1012k LUT, 1936k FF N/A
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